3.518 \(\int \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=82 \[ \frac{2 a (A+3 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}{3 d} \]

[Out]

(2*a*(A + 3*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Sqrt[
a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.262272, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {2955, 4013, 3804} \[ \frac{2 a (A+3 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{a \sec (c+d x)+a}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*a*(A + 3*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Sqrt[
a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 A \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac{1}{3} \left ((A+3 B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a (A+3 B) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{2 A \sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.175153, size = 56, normalized size = 0.68 \[ \frac{2 \sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} (A \cos (c+d x)+2 A+3 B)}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(2*A + 3*B + A*Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(3*d)

________________________________________________________________________________________

Maple [A]  time = 0.265, size = 65, normalized size = 0.8 \begin{align*} -{\frac{ \left ( -2+2\,\cos \left ( dx+c \right ) \right ) \left ( A\cos \left ( dx+c \right ) +2\,A+3\,B \right ) }{3\,d\sin \left ( dx+c \right ) }\sqrt{\cos \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x)

[Out]

-2/3/d*(-1+cos(d*x+c))*(A*cos(d*x+c)+2*A+3*B)*cos(d*x+c)^(1/2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 1.94239, size = 190, normalized size = 2.32 \begin{align*} \frac{\sqrt{2}{\left (3 \, \cos \left (\frac{2}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) - 3 \, \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) \sin \left (\frac{2}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) + 2 \, \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 3 \, \sin \left (\frac{1}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right )\right )} A \sqrt{a} + 12 \, \sqrt{2} B \sqrt{a} \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/6*(sqrt(2)*(3*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*
d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A*sqrt(a) + 12*sqrt(2)*B*sqrt(a)*sin(1/2*arctan2(sin(d*
x + c), cos(d*x + c))))/d

________________________________________________________________________________________

Fricas [A]  time = 0.470526, size = 171, normalized size = 2.09 \begin{align*} \frac{2 \,{\left (A \cos \left (d x + c\right ) + 2 \, A + 3 \, B\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/3*(A*cos(d*x + c) + 2*A + 3*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(d*co
s(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)